Workflow Element Store

  1. Unstructured data (Audio)
  2. WebScraping
  3. Data Generation
  4. Unstructured data (Images / Videos)
  5. Data Logging
  6. Mobile Applications or IoT Applications
  7. Public Datasets
  8. Surveys and Questionnaires
  9. Structured Data (Tabular)
  10. APIs and Data Feeds
  11. Crowdsourcing
  12. Data Pre-existing
  13. Data Collaboration and Partnerships
  1. Azure blob storage
  2. GCS
  3. AWS Redshift
  4. Informatica
  5. Azure Data Warehouse
  6. S3
  7. MySQL
  8. MS SQL server
  9. NoSQL DB
  10. Oracle DB
  11. GCP BigQuery
  12. PostgreSQL
  13. RDBMS
  1. Handling Missing Data
  2. Data Scaling and Normalization
  3. AutoEDA libraries
  4. Handling Imbalanced Classes
  5. Handling Categorical Data
  6. Dimensionality Reduction
  7. Dealing with Outliers
  8. Domain-Specific Feature Engineering
  9. Interaction Features
  10. Feature Extraction from Images
  11. Data Scaling and Normalization
  12. Time-Based Features
  13. Textual Feature Extraction
  14. Handling Time-Series Data
  15. Handling Noisy Data
  16. Auto-Preprocessing libraries
  17. Encoding Categorical Variables
  18. Feature Selection
  19. Binning
  20. Polynomial Features
  21. Logarithmic Transform
  22. Dimensionality Reduction
  1. Supervised Learning-Regression
  2. Train-Test Split
  3. Data Partitioning
  4. Unsupervised Learning
  5. Supervised Learning-multiclass classification
  6. Blackbox Techniques
  7. Time Series Anaysis
  8. Ensemble Techniques
  9. Supervised Learning-binary classification
  10. Forecasting
  1. Early Stopping
  2. Ensemble Methods
  3. Hyperparameter Tuning
  4. Weight Initialization
  5. Batch Size Selection
  6. Cross-Validation
  7. Learning Rate Scheduling
  8. Data Partition-sequential
  9. Regular Monitoring and Logging
  10. Data Augmentation
  11. Batch Normalization
  12. Regularization
  13. Gradient Clipping
  14. Train-Test Split
  15. Transfer Learning
  1. Model Comparison
  2. Model Interpretability
  3. Regularization Techniques
  4. Cross-Validation
  5. Data Partitioning
  6. Hyperparameter Tuning
  7. Train-Test Split
  8. Evaluation Metrics
  9. External Validation
  10. Performance Visualization
  1. Web APIs - Flask, FastAPI, etc.
  2. Continuous Integration and Deployment (CI/CD)
  3. Data Drift Monitoring
  4. A/B Testing
  5. Model Retraining and Updating
  6. Edge Deployment
  7. Documentation and Reporting
  8. Concept Drift Detection
  9. Model Registry
  10. Model Serialization
  11. Model Health Monitoring
  12. Prediction Logging
  13. Serverless Computing
  14. Model Versioning
  15. Alerting and Notification
  16. Cloud Deployment
  17. Model Drift
  18. Monitoring and Logging
  19. Documentation and API Documentation
  20. Performance Metrics
  21. Feedback Collection
  22. Security Considerations
  23. Streamlit
  24. Containerization
  25. Model Monitoring and Maintenance
  26. Error Analysis
  27. Bias and Fairness Assessment
  1. End User Machine
  2. Mobile
ML Workflow Beginner - Architecture
  • Element belongs to model
  • Element not belongs to model
Feature Store

Feature Store
(Online / Offline)

Data Sources

Data Sources

Data Warehouse

Data Warehouse/ Data Lake

Data Pre Processing & Feature Engineering

EDA, Data Pre Processing & Feature Engineering

Model Selection

Model Selection

Model Training & Hyper Parameter Tuning

Model Training & Hyper Parameter Tuning

Model Evaluation

Model Evaluation

Model Deployment

Model Deployment

End User Device

End User Device

Model Registry

Model Registry