Workflow Element Store

  1. Data Generation
  2. Data Logging
  3. Public Datasets
  4. Surveys and Questionnaires
  5. Mobile Applications or IoT Applications
  6. Data Pre-existing
  7. WebScraping
  8. Unstructured data (Images / Videos)
  9. Crowdsourcing
  10. Data Collaboration and Partnerships
  11. Structured Data (Tabular)
  12. APIs and Data Feeds
  13. Unstructured data (Audio)
  1. Informatica
  2. AWS Redshift
  3. Azure blob storage
  4. Oracle DB
  5. GCS
  6. PostgreSQL
  7. RDBMS
  8. MySQL
  9. GCP BigQuery
  10. MS SQL server
  11. S3
  12. NoSQL DB
  13. Azure Data Warehouse
  1. Feature Selection
  2. Feature Extraction from Images
  3. Auto-Preprocessing libraries
  4. Dimensionality Reduction
  5. Handling Missing Data
  6. Time-Based Features
  7. Handling Categorical Data
  8. Binning
  9. Domain-Specific Feature Engineering
  10. Data Scaling and Normalization
  11. Encoding Categorical Variables
  12. Dimensionality Reduction
  13. Handling Noisy Data
  14. Handling Time-Series Data
  15. AutoEDA libraries
  16. Interaction Features
  17. Polynomial Features
  18. Textual Feature Extraction
  19. Data Scaling and Normalization
  20. Dealing with Outliers
  21. Logarithmic Transform
  22. Handling Imbalanced Classes
  1. Train-Test Split
  2. Supervised Learning-binary classification
  3. Blackbox Techniques
  4. Supervised Learning-Regression
  5. Time Series Anaysis
  6. Data Partitioning
  7. Forecasting
  8. Supervised Learning-multiclass classification
  9. Unsupervised Learning
  10. Ensemble Techniques
  1. Batch Size Selection
  2. Weight Initialization
  3. Train-Test Split
  4. Regularization
  5. Transfer Learning
  6. Batch Normalization
  7. Data Partition-sequential
  8. Regular Monitoring and Logging
  9. Ensemble Methods
  10. Cross-Validation
  11. Hyperparameter Tuning
  12. Data Augmentation
  13. Early Stopping
  14. Gradient Clipping
  15. Learning Rate Scheduling
  1. Performance Visualization
  2. Data Partitioning
  3. Model Interpretability
  4. Evaluation Metrics
  5. Model Comparison
  6. Train-Test Split
  7. Hyperparameter Tuning
  8. External Validation
  9. Regularization Techniques
  10. Cross-Validation
  1. Containerization
  2. Model Retraining and Updating
  3. Model Serialization
  4. Prediction Logging
  5. Error Analysis
  6. Streamlit
  7. Cloud Deployment
  8. Model Drift
  9. Alerting and Notification
  10. Model Health Monitoring
  11. Continuous Integration and Deployment (CI/CD)
  12. Edge Deployment
  13. Model Registry
  14. Monitoring and Logging
  15. Web APIs - Flask, FastAPI, etc.
  16. Performance Metrics
  17. Model Versioning
  18. Documentation and Reporting
  19. A/B Testing
  20. Concept Drift Detection
  21. Feedback Collection
  22. Serverless Computing
  23. Security Considerations
  24. Model Monitoring and Maintenance
  25. Documentation and API Documentation
  26. Data Drift Monitoring
  27. Bias and Fairness Assessment
  1. Mobile
  2. End User Machine
ML Workflow Beginner - Architecture
  • Element belongs to model
  • Element not belongs to model
Feature Store

Feature Store
(Online / Offline)

Data Sources

Data Sources

Data Warehouse

Data Warehouse/ Data Lake

Data Pre Processing & Feature Engineering

EDA, Data Pre Processing & Feature Engineering

Model Selection

Model Selection

Model Training & Hyper Parameter Tuning

Model Training & Hyper Parameter Tuning

Model Evaluation

Model Evaluation

Model Deployment

Model Deployment

End User Device

End User Device

Model Registry

Model Registry