Workflow Element Store

  1. Crowdsourcing
  2. Unstructured data (Images / Videos)
  3. APIs and Data Feeds
  4. Mobile Applications or IoT Applications
  5. Structured Data (Tabular)
  6. Data Generation
  7. Data Logging
  8. Data Collaboration and Partnerships
  9. WebScraping
  10. Surveys and Questionnaires
  11. Public Datasets
  12. Unstructured data (Audio)
  13. Data Pre-existing
  1. GCS
  2. AWS Redshift
  3. Oracle DB
  4. RDBMS
  5. Informatica
  6. Azure Data Warehouse
  7. S3
  8. PostgreSQL
  9. Azure blob storage
  10. MySQL
  11. GCP BigQuery
  12. MS SQL server
  13. NoSQL DB
  1. Handling Imbalanced Classes
  2. AutoEDA libraries
  3. Logarithmic Transform
  4. Dimensionality Reduction
  5. Dimensionality Reduction
  6. Feature Selection
  7. Auto-Preprocessing libraries
  8. Interaction Features
  9. Handling Time-Series Data
  10. Time-Based Features
  11. Encoding Categorical Variables
  12. Binning
  13. Textual Feature Extraction
  14. Dealing with Outliers
  15. Data Scaling and Normalization
  16. Domain-Specific Feature Engineering
  17. Handling Categorical Data
  18. Data Scaling and Normalization
  19. Feature Extraction from Images
  20. Handling Missing Data
  21. Handling Noisy Data
  22. Polynomial Features
  1. Unsupervised Learning
  2. Blackbox Techniques
  3. Time Series Anaysis
  4. Train-Test Split
  5. Supervised Learning-binary classification
  6. Data Partitioning
  7. Supervised Learning-Regression
  8. Supervised Learning-multiclass classification
  9. Ensemble Techniques
  10. Forecasting
  1. Batch Size Selection
  2. Data Augmentation
  3. Regular Monitoring and Logging
  4. Regularization
  5. Cross-Validation
  6. Early Stopping
  7. Weight Initialization
  8. Ensemble Methods
  9. Gradient Clipping
  10. Train-Test Split
  11. Hyperparameter Tuning
  12. Batch Normalization
  13. Transfer Learning
  14. Data Partition-sequential
  15. Learning Rate Scheduling
  1. Hyperparameter Tuning
  2. Cross-Validation
  3. Model Comparison
  4. Data Partitioning
  5. Performance Visualization
  6. Regularization Techniques
  7. Train-Test Split
  8. External Validation
  9. Evaluation Metrics
  10. Model Interpretability
  1. Error Analysis
  2. Model Serialization
  3. Containerization
  4. Feedback Collection
  5. Bias and Fairness Assessment
  6. Documentation and API Documentation
  7. Data Drift Monitoring
  8. Documentation and Reporting
  9. Alerting and Notification
  10. Model Monitoring and Maintenance
  11. Concept Drift Detection
  12. Monitoring and Logging
  13. Cloud Deployment
  14. Edge Deployment
  15. Model Health Monitoring
  16. A/B Testing
  17. Model Retraining and Updating
  18. Model Drift
  19. Model Registry
  20. Security Considerations
  21. Web APIs - Flask, FastAPI, etc.
  22. Streamlit
  23. Performance Metrics
  24. Continuous Integration and Deployment (CI/CD)
  25. Serverless Computing
  26. Model Versioning
  27. Prediction Logging
  1. Mobile
  2. End User Machine
ML Workflow Beginner - Architecture
  • Element belongs to model
  • Element not belongs to model

Feature Store
(Online / Offline)

Data Sources

Data Warehouse/ Data Lake

EDA, Data Pre Processing & Feature Engineering

Model Selection

Model Training & Hyper Parameter Tuning

Model Evaluation

Model Deployment

End User Device

Model Registry