Workflow Element Store

  1. Public Datasets
  2. Mobile Applications or IoT Applications
  3. Data Generation
  4. Unstructured data (Audio)
  5. Data Logging
  6. APIs and Data Feeds
  7. Structured Data (Tabular)
  8. Data Pre-existing
  9. Unstructured data (Images / Videos)
  10. WebScraping
  11. Surveys and Questionnaires
  12. Data Collaboration and Partnerships
  13. Crowdsourcing
  1. PostgreSQL
  2. MySQL
  3. Azure blob storage
  4. GCS
  5. Informatica
  6. S3
  7. NoSQL DB
  8. Oracle DB
  9. GCP BigQuery
  10. RDBMS
  11. AWS Redshift
  12. Azure Data Warehouse
  13. MS SQL server
  1. Handling Categorical Data
  2. Handling Imbalanced Classes
  3. Data Scaling and Normalization
  4. Logarithmic Transform
  5. Textual Feature Extraction
  6. Dimensionality Reduction
  7. Binning
  8. Time-Based Features
  9. Handling Noisy Data
  10. Interaction Features
  11. Encoding Categorical Variables
  12. Domain-Specific Feature Engineering
  13. Data Scaling and Normalization
  14. Auto-Preprocessing libraries
  15. Handling Missing Data
  16. Handling Time-Series Data
  17. AutoEDA libraries
  18. Polynomial Features
  19. Feature Selection
  20. Dimensionality Reduction
  21. Dealing with Outliers
  22. Feature Extraction from Images
  1. Supervised Learning-multiclass classification
  2. Supervised Learning-Regression
  3. Train-Test Split
  4. Data Partitioning
  5. Unsupervised Learning
  6. Blackbox Techniques
  7. Time Series Anaysis
  8. Ensemble Techniques
  9. Forecasting
  10. Supervised Learning-binary classification
  1. Regularization
  2. Regular Monitoring and Logging
  3. Learning Rate Scheduling
  4. Ensemble Methods
  5. Weight Initialization
  6. Cross-Validation
  7. Early Stopping
  8. Data Partition-sequential
  9. Data Augmentation
  10. Hyperparameter Tuning
  11. Gradient Clipping
  12. Train-Test Split
  13. Transfer Learning
  14. Batch Size Selection
  15. Batch Normalization
  1. Train-Test Split
  2. Model Interpretability
  3. External Validation
  4. Evaluation Metrics
  5. Performance Visualization
  6. Model Comparison
  7. Cross-Validation
  8. Data Partitioning
  9. Regularization Techniques
  10. Hyperparameter Tuning
  1. Continuous Integration and Deployment (CI/CD)
  2. Data Drift Monitoring
  3. Model Drift
  4. Security Considerations
  5. Model Registry
  6. Containerization
  7. Monitoring and Logging
  8. Error Analysis
  9. Web APIs - Flask, FastAPI, etc.
  10. Serverless Computing
  11. Documentation and Reporting
  12. Prediction Logging
  13. Model Serialization
  14. Performance Metrics
  15. Streamlit
  16. Edge Deployment
  17. Model Monitoring and Maintenance
  18. Bias and Fairness Assessment
  19. Model Versioning
  20. Model Health Monitoring
  21. Alerting and Notification
  22. Model Retraining and Updating
  23. Concept Drift Detection
  24. Cloud Deployment
  25. Feedback Collection
  26. A/B Testing
  27. Documentation and API Documentation
  1. End User Machine
  2. Mobile
ML Workflow Beginner - Architecture
  • Element belongs to model
  • Element not belongs to model
Feature Store

Feature Store
(Online / Offline)

Data Sources

Data Sources

Data Warehouse

Data Warehouse/ Data Lake

Data Pre Processing & Feature Engineering

EDA, Data Pre Processing & Feature Engineering

Model Selection

Model Selection

Model Training & Hyper Parameter Tuning

Model Training & Hyper Parameter Tuning

Model Evaluation

Model Evaluation

Model Deployment

Model Deployment

End User Device

End User Device

Model Registry

Model Registry