Workflow Element Store

  1. Data Generation
  2. WebScraping
  3. Mobile Applications or IoT Applications
  4. Unstructured data (Images / Videos)
  5. Data Pre-existing
  6. APIs and Data Feeds
  7. Public Datasets
  8. Data Logging
  9. Surveys and Questionnaires
  10. Unstructured data (Audio)
  11. Structured Data (Tabular)
  12. Crowdsourcing
  13. Data Collaboration and Partnerships
  1. MySQL
  2. Azure blob storage
  3. NoSQL DB
  4. PostgreSQL
  5. RDBMS
  6. Oracle DB
  7. AWS Redshift
  8. GCP BigQuery
  9. S3
  10. Azure Data Warehouse
  11. MS SQL server
  12. Informatica
  13. GCS
  1. Binning
  2. Dealing with Outliers
  3. Feature Selection
  4. Handling Imbalanced Classes
  5. Logarithmic Transform
  6. Handling Noisy Data
  7. Data Scaling and Normalization
  8. AutoEDA libraries
  9. Time-Based Features
  10. Dimensionality Reduction
  11. Domain-Specific Feature Engineering
  12. Encoding Categorical Variables
  13. Feature Extraction from Images
  14. Handling Missing Data
  15. Interaction Features
  16. Polynomial Features
  17. Handling Time-Series Data
  18. Handling Categorical Data
  19. Data Scaling and Normalization
  20. Auto-Preprocessing libraries
  21. Textual Feature Extraction
  22. Dimensionality Reduction
  1. Supervised Learning-Regression
  2. Unsupervised Learning
  3. Supervised Learning-binary classification
  4. Ensemble Techniques
  5. Time Series Anaysis
  6. Data Partitioning
  7. Train-Test Split
  8. Forecasting
  9. Blackbox Techniques
  10. Supervised Learning-multiclass classification
  1. Transfer Learning
  2. Regularization
  3. Weight Initialization
  4. Data Augmentation
  5. Learning Rate Scheduling
  6. Data Partition-sequential
  7. Hyperparameter Tuning
  8. Train-Test Split
  9. Gradient Clipping
  10. Early Stopping
  11. Batch Size Selection
  12. Cross-Validation
  13. Regular Monitoring and Logging
  14. Batch Normalization
  15. Ensemble Methods
  1. Hyperparameter Tuning
  2. Model Interpretability
  3. Train-Test Split
  4. External Validation
  5. Evaluation Metrics
  6. Model Comparison
  7. Cross-Validation
  8. Data Partitioning
  9. Regularization Techniques
  10. Performance Visualization
  1. Documentation and API Documentation
  2. Model Retraining and Updating
  3. Web APIs - Flask, FastAPI, etc.
  4. Prediction Logging
  5. Streamlit
  6. Security Considerations
  7. Containerization
  8. Model Serialization
  9. A/B Testing
  10. Concept Drift Detection
  11. Monitoring and Logging
  12. Error Analysis
  13. Model Monitoring and Maintenance
  14. Feedback Collection
  15. Model Versioning
  16. Cloud Deployment
  17. Data Drift Monitoring
  18. Alerting and Notification
  19. Serverless Computing
  20. Performance Metrics
  21. Model Health Monitoring
  22. Model Drift
  23. Documentation and Reporting
  24. Model Registry
  25. Bias and Fairness Assessment
  26. Edge Deployment
  27. Continuous Integration and Deployment (CI/CD)
  1. End User Machine
  2. Mobile
ML Workflow Beginner - Architecture
  • Element belongs to model
  • Element not belongs to model
Feature Store

Feature Store
(Online / Offline)

Data Sources

Data Sources

Data Warehouse

Data Warehouse/ Data Lake

Data Pre Processing & Feature Engineering

EDA, Data Pre Processing & Feature Engineering

Model Selection

Model Selection

Model Training & Hyper Parameter Tuning

Model Training & Hyper Parameter Tuning

Model Evaluation

Model Evaluation

Model Deployment

Model Deployment

End User Device

End User Device

Model Registry

Model Registry