Workflow Element Store

  1. Surveys and Questionnaires
  2. Crowdsourcing
  3. Data Generation
  4. Unstructured data (Images / Videos)
  5. WebScraping
  6. Structured Data (Tabular)
  7. Unstructured data (Audio)
  8. Public Datasets
  9. Data Logging
  10. Data Collaboration and Partnerships
  11. Data Pre-existing
  12. APIs and Data Feeds
  13. Mobile Applications or IoT Applications
  1. GCP BigQuery
  2. Azure blob storage
  3. NoSQL DB
  4. S3
  5. RDBMS
  6. AWS Redshift
  7. Informatica
  8. PostgreSQL
  9. Oracle DB
  10. GCS
  11. MS SQL server
  12. Azure Data Warehouse
  13. MySQL
  1. Binning
  2. Handling Noisy Data
  3. Data Scaling and Normalization
  4. Handling Time-Series Data
  5. Textual Feature Extraction
  6. Domain-Specific Feature Engineering
  7. Data Scaling and Normalization
  8. Feature Extraction from Images
  9. Polynomial Features
  10. Dimensionality Reduction
  11. Feature Selection
  12. Logarithmic Transform
  13. Interaction Features
  14. Dimensionality Reduction
  15. Auto-Preprocessing libraries
  16. Handling Categorical Data
  17. AutoEDA libraries
  18. Encoding Categorical Variables
  19. Handling Imbalanced Classes
  20. Time-Based Features
  21. Handling Missing Data
  22. Dealing with Outliers
  1. Supervised Learning-Regression
  2. Supervised Learning-binary classification
  3. Unsupervised Learning
  4. Time Series Anaysis
  5. Blackbox Techniques
  6. Train-Test Split
  7. Supervised Learning-multiclass classification
  8. Forecasting
  9. Data Partitioning
  10. Ensemble Techniques
  1. Regularization
  2. Data Partition-sequential
  3. Learning Rate Scheduling
  4. Batch Normalization
  5. Train-Test Split
  6. Early Stopping
  7. Batch Size Selection
  8. Gradient Clipping
  9. Cross-Validation
  10. Weight Initialization
  11. Regular Monitoring and Logging
  12. Hyperparameter Tuning
  13. Ensemble Methods
  14. Data Augmentation
  15. Transfer Learning
  1. External Validation
  2. Cross-Validation
  3. Model Comparison
  4. Regularization Techniques
  5. Data Partitioning
  6. Train-Test Split
  7. Hyperparameter Tuning
  8. Evaluation Metrics
  9. Model Interpretability
  10. Performance Visualization
  1. Containerization
  2. Model Serialization
  3. Web APIs - Flask, FastAPI, etc.
  4. Concept Drift Detection
  5. Documentation and API Documentation
  6. Model Versioning
  7. Data Drift Monitoring
  8. Streamlit
  9. Feedback Collection
  10. Monitoring and Logging
  11. Model Health Monitoring
  12. Alerting and Notification
  13. Model Registry
  14. Serverless Computing
  15. Model Drift
  16. Security Considerations
  17. Error Analysis
  18. Performance Metrics
  19. Model Monitoring and Maintenance
  20. Continuous Integration and Deployment (CI/CD)
  21. Prediction Logging
  22. Bias and Fairness Assessment
  23. Documentation and Reporting
  24. Model Retraining and Updating
  25. Cloud Deployment
  26. A/B Testing
  27. Edge Deployment
  1. Mobile
  2. End User Machine
ML Workflow Beginner - Architecture
  • Element belongs to model
  • Element not belongs to model
Feature Store

Feature Store
(Online / Offline)

Data Sources

Data Sources

Data Warehouse

Data Warehouse/ Data Lake

Data Pre Processing & Feature Engineering

EDA, Data Pre Processing & Feature Engineering

Model Selection

Model Selection

Model Training & Hyper Parameter Tuning

Model Training & Hyper Parameter Tuning

Model Evaluation

Model Evaluation

Model Deployment

Model Deployment

End User Device

End User Device

Model Registry

Model Registry